
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).
Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).
Google Scholar
Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118, e2019377118 (2021).
Google Scholar
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
Google Scholar
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).
Google Scholar
Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).
Google Scholar
Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).
Google Scholar
Brando, P. M. et al. Tipping points of Amazonian forests: beyond myths and toward solutions. Annu. Rev. Environ. Resour. 50, 97–131 (2025).
Google Scholar
Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).
Google Scholar
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Google Scholar
Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).
Google Scholar
Aguirre-Gutiérrez, J. et al. Functional susceptibility of tropical forests to climate change. Nat. Ecol. Evol. 6, 878–889 (2022).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
Chen, S. et al. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 631, 111–117 (2024).
Google Scholar
Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).
Google Scholar
Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).
Google Scholar
Fontes, C. G. et al. Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees. Phil. Trans. R. Soc. B 373, 20180209 (2018).
Google Scholar
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
Google Scholar
McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).
Google Scholar
Higuchi, N. et al. BIONTE: Biomassa e Nutrientes Florestais (Instituto Nacional de Pesquisas da Amazônia, 1997).
Amaral, M., Lima, A., Higuchi, F., dos Santos, J. & Higuchi, N. Dynamics of tropical forest twenty-five years after experimental logging in central Amazon mature forest. Forests 10, 89 (2019).
Google Scholar
Gaui, T. D. et al. Long-term effect of selective logging on floristic composition: a 25 year experiment in the Brazilian Amazon. For. Ecol. Manag. 440, 258–266 (2019).
Google Scholar
Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).
McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology 179–183 (American Meteorological Society, 1993).
Liu, S., McVicar, T. R., Wu, X., Cao, X. & Liu, Y. Assessing the relative importance of dry-season incoming solar radiation and water storage dynamics during the 2005, 2010 and 2015 southern Amazon droughts: not all droughts are created equal. Environ. Res. Lett. 19, 034027 (2024).
Google Scholar
Liu, Y. Y., van Dijk, A. I. J. M., Meir, P. & McVicar, T. R. Drought and radiation explain fluctuations in Amazon rainforest greenness during the 2015–2016 drought. Biogeosciences 21, 2273–2295 (2024).
Google Scholar
Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).
Google Scholar
Feng, Y., Negrón-Juárez, R. I., Romps, D. M. & Chambers, J. Q. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nat. Commun. 14, 101 (2023).
Google Scholar
Schumacher, R. S. & Rasmussen, K. L. The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ. 1, 300–314 (2020).
Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).
Google Scholar
Chao, K.-J. et al. Growth and wood density predict tree mortality in Amazon forests. J. Ecol. 96, 281–292 (2008).
Google Scholar
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).
Google Scholar
Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
Google Scholar
Negrón-Juárez, R. et al. Calibration, measurement, and characterization of soil moisture dynamics in a central Amazonian tropical forest. Vadose Zone J. 19, e20070 (2020).
Gimenez, B. O. et al. Species-specific shifts in diurnal sap velocity dynamics and hysteretic behavior of ecophysiological variables during the 2015–2016 El Niño event in the Amazon forest. Front. Plant Sci. 10, 830 (2019).
Meng, L. et al. Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the central Amazon during the 2015–16 El Niño drought. Environ. Res. Lett. 17, 064023 (2022).
Google Scholar
Burnett, M. W., Quetin, G. R. & Konings, A. G. Data-driven estimates of evapotranspiration and its controls in the Congo Basin. Hydrol. Earth Syst. Sci. 24, 4189–4211 (2020).
Google Scholar
Tomasella, J., Hodnett, M. G. & Rossato, L. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci. Soc. Am. J. 64, 327–338 (2000).
Google Scholar
Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, 111–117 (2023).
Google Scholar
Garcia, M. N. et al. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia 197, 13–24 (2021).
Google Scholar
Pivovaroff, A. L. et al. Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient. Biotropica 53, 1213–1225 (2021).
Google Scholar
Wang, Y.-Q. et al. Hydraulic determinants of drought-induced tree mortality and changes in tree abundance between two tropical forests with different water availability. Agric. For. Meteorol. 331, 109329 (2023).
Google Scholar
Clymo, R. S. & Whittaker, R. H. Communities and ecosystems. J. Ecol. 58, 897 (1970).
Google Scholar
Danabasoglu, G. et al. The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2020JD032521 (2020).
Burrows, S. M. et al. The DOE E3SM v1.1 biogeochemistry configuration: description and simulated ecosystem-climate responses to historical changes in forcing. J. Adv. Model. Earth Syst. 12, e2019MS001766 (2020).
Google Scholar
Harrop, B. E. et al. Diurnal rainfall response to the physiological and radiative effects of CO2 in tropical forests in the energy exascale earth system model v1. J. Geophys. Res. Atmospheres 127, e2021JD036148 (2022).
Google Scholar
Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).
Google Scholar
Longo, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol. 219, 914–931 (2018).
Google Scholar
Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).
Google Scholar
Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
Google Scholar
Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).
Google Scholar
Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).
Google Scholar
Reid, J. W. & Lovejoy, T. E. Ever Green: Saving Big Forests to Save the Planet (WW Norton & Company, 2022).
Chambers, J. Q. et al. Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia 141, 596–611 (2004).
Google Scholar
Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the functionally assembled terrestrial ecosystem simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).
Google Scholar
Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).
Google Scholar
Raupach, M. R. et al. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11, 3453–3475 (2014).
Google Scholar
Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).
Google Scholar
Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil. Trans. R. Soc. B 368, 20120427 (2013).
Google Scholar
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge Univ. Press, 2021).
Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth system models. Biogeosciences 12, 5211–5228 (2015).
Google Scholar
Yin, D., Roderick, M. L., Leech, G., Sun, F. & Huang, Y. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett. 41, 7891–7897 (2014).
Google Scholar
Negron-Juarez, R. et al. Windthrow characteristics and their regional association with rainfall, soil, and surface elevation in the Amazon. Environ. Res. Lett. 18, 014030 (2023).
Google Scholar
Garstang, M., White, S., Shugart, H. H. & Halverson, J. Convective cloud downdrafts as the cause of large blowdowns in the Amazon rainforest. Meteorol. Atmospheric Phys. 67, 199–212 (1998).
Google Scholar
Araujo, R. F. et al. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50 ha plot. Biogeosciences 18, 6517–6531 (2021).
Google Scholar
Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutierrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation and plant mortality in a tropical forest. Ecology 102, e03541 (2021).
Google Scholar
Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W. J. & Braun, O. P. G. Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology 75, 853–858 (1994).
Google Scholar
Negrón-Juárez, R. I. et al. Vulnerability of Amazon forests to storm-driven tree mortality. Environ. Res. Lett. 13, 054021 (2018).
Google Scholar
Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).
Google Scholar
Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).
Google Scholar
Konings, A. G. et al. Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests. Geophys. Res. Lett. 44, 2290–2299 (2017).
Google Scholar
Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytol. 223, 1253–1266 (2019).
Google Scholar
Binks, O. et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob. Change Biol. 25, 2678–2690 (2019).
Google Scholar
Oliveira, R. S., Dawson, T. E., Burgess, S. S. O. & Nepstad, D. C. Hydraulic redistribution in three Amazonian trees. Oecologia 145, 354–363 (2005).
Google Scholar
Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).
Google Scholar
Marengo, J. A. et al. Long-term variability, extremes and changes in temperature and hydrometeorology in the Amazon region: a review. Acta Amaz. 54, e54es22098 (2024).
Google Scholar
Espinoza, J.-C. et al. The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Sci. Rep. 14, 8107 (2024).
Google Scholar
Dyer, L., Chambers, J., Pastorello, G. & Weber, A. Hot Droughts and Forest Tree Dynamics in the Amazon — Statistical Models, Scripts, Data, and Outputs (OSTI, 2025).
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).
Google Scholar
Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).
Google Scholar
Pastorello, G. et al. Harmonized wood density data for central Amazon species. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1898906 (2022).
Chave, J. et al. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16, 2356–2367 (2006).
Google Scholar
Lamour, J. et al. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. Plant Cell Environ. 46, 3806–3821 (2023).
Google Scholar
Sullivan, M. J. P. et al. Variation in wood density across South American tropical forests. Nat. Commun. 16, 2351 (2025).
Google Scholar
Adams, J. Climate_indices, an open source Python library providing reference implementations of commonly used climate indices. GitHub https://github.com/monocongo/climate_indices (2023).
Pastorello, G. et al. Drought index using micrometeorological data from Embrapa Weather Station at Adolpho Ducke Reserve in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1958257 (2023).
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper 56 (UN Food and Agriculture Organization, 1998).
Lima, A. J. N., Teixeira, L. M., Carneiro, V. M. C., dos Santos, J. & Higuchi, N. Biomass stock and structural analysis of a secondary forest in Manaus (AM) region, ten years after clear cutting followed by fire. Acta Amaz. 37, 49–53 (2007).
Google Scholar
Araújo, A. C. et al. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. J. Geophys. Res. Atmospheres 107, LBA-58 (2002).
Google Scholar
Araujo, A. et al. Selected micrometeorological and soil data from the Manaus ZF2 K34 Eddy covariance tower for the 2015/16 El Niño event. NGEE-Tropics data collection. ESS-Dive https://doi.org/10.15486/ngt/1958362 (2023).
Burgess, S. S. O., Adams, M. A., Turner, N. C. & Ong, C. K. The redistribution of soil water by tree root systems. Oecologia 115, 306–311 (1998).
Google Scholar
Christianson, D. S. et al. A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations. Ecol. Inform. 42, 148–158 (2017).
Google Scholar
Marshall, D. C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 33, 385–396 (1958).
Google Scholar
Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).
Google Scholar
Dawson, T. E. et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol. 27, 561–575 (2007).
Google Scholar
Steppe, K., De Pauw, D. J. W., Doody, T. M. & Teskey, R. O. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 150, 1046–1056 (2010).
Google Scholar
Grossiord, C. et al. Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia 191, 519–530 (2019).
Google Scholar
Rao, M. P. et al. Approaching a thermal tipping point in the Eurasian boreal forest at its southern margin. Commun. Earth Environ. 4, 247 (2023).
Google Scholar
Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).
Google Scholar
Leung, L. R., Bader, D. C., Taylor, M. A. & McCoy, R. B. An introduction to the E3SM special collection: goals, science drivers, development, and analysis. J. Adv. Model. Earth Syst. 12, e2019MS001821 (2020).
Google Scholar
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).
Google Scholar
Lima, A. J. N. et al. Growth, mortality, wood density, biomass data from BIONTE inventories in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1898910 (2022).
Meng, L., Koven, C., Pastorello, G. & Chambers, J. Forcing data (CESM2/CMIP6) for projection of drought impacts (2015–2100) at the K34 site in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1923910 (2023).
Gimenez, B. et al. Sap velocity and leaf-level measurements in Manaus and Santarém-Brazil. NGEE-Tropics data collection. ESS-Dive https://doi.org/10.15486/ngt/1570380 (2021).
تنويه من موقعنا
تم جلب هذا المحتوى بشكل آلي من المصدر:
yalebnan.org
بتاريخ: 2025-12-11 07:42:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقعنا والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.
