Hot droughts in Amazon provide a window to a future hyperopical climate


  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118, e2019377118 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

    Article
    PubMed

    Google Scholar

  • Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Brando, P. M. et al. Tipping points of Amazonian forests: beyond myths and toward solutions. Annu. Rev. Environ. Resour. 50, 97–131 (2025).

    Article

    Google Scholar

  • Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).

    Article
    CAS

    Google Scholar

  • Aguirre-Gutiérrez, J. et al. Functional susceptibility of tropical forests to climate change. Nat. Ecol. Evol. 6, 878–889 (2022).

    Article
    PubMed

    Google Scholar

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, S. et al. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature 631, 111–117 (2024).

    Article
    CAS
    PubMed

    Google Scholar

  • Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).

    Article

    Google Scholar

  • Fontes, C. G. et al. Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees. Phil. Trans. R. Soc. B 373, 20180209 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article
    PubMed

    Google Scholar

  • McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).

    Article
    CAS

    Google Scholar

  • Higuchi, N. et al. BIONTE: Biomassa e Nutrientes Florestais (Instituto Nacional de Pesquisas da Amazônia, 1997).

  • Amaral, M., Lima, A., Higuchi, F., dos Santos, J. & Higuchi, N. Dynamics of tropical forest twenty-five years after experimental logging in central Amazon mature forest. Forests 10, 89 (2019).

    Article

    Google Scholar

  • Gaui, T. D. et al. Long-term effect of selective logging on floristic composition: a 25 year experiment in the Brazilian Amazon. For. Ecol. Manag. 440, 258–266 (2019).

    Article

    Google Scholar

  • Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).

  • Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

  • McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology 179–183 (American Meteorological Society, 1993).

  • Liu, S., McVicar, T. R., Wu, X., Cao, X. & Liu, Y. Assessing the relative importance of dry-season incoming solar radiation and water storage dynamics during the 2005, 2010 and 2015 southern Amazon droughts: not all droughts are created equal. Environ. Res. Lett. 19, 034027 (2024).

    Article

    Google Scholar

  • Liu, Y. Y., van Dijk, A. I. J. M., Meir, P. & McVicar, T. R. Drought and radiation explain fluctuations in Amazon rainforest greenness during the 2015–2016 drought. Biogeosciences 21, 2273–2295 (2024).

    Article

    Google Scholar

  • Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).

    Article
    PubMed

    Google Scholar

  • Feng, Y., Negrón-Juárez, R. I., Romps, D. M. & Chambers, J. Q. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nat. Commun. 14, 101 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Schumacher, R. S. & Rasmussen, K. L. The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ. 1, 300–314 (2020).

  • Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).

    Article

    Google Scholar

  • Chao, K.-J. et al. Growth and wood density predict tree mortality in Amazon forests. J. Ecol. 96, 281–292 (2008).

    Article

    Google Scholar

  • Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).

    Article
    PubMed

    Google Scholar

  • Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).

  • Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Negrón-Juárez, R. et al. Calibration, measurement, and characterization of soil moisture dynamics in a central Amazonian tropical forest. Vadose Zone J. 19, e20070 (2020).

  • Gimenez, B. O. et al. Species-specific shifts in diurnal sap velocity dynamics and hysteretic behavior of ecophysiological variables during the 2015–2016 El Niño event in the Amazon forest. Front. Plant Sci. 10, 830 (2019).

  • Meng, L. et al. Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the central Amazon during the 2015–16 El Niño drought. Environ. Res. Lett. 17, 064023 (2022).

    Article

    Google Scholar

  • Burnett, M. W., Quetin, G. R. & Konings, A. G. Data-driven estimates of evapotranspiration and its controls in the Congo Basin. Hydrol. Earth Syst. Sci. 24, 4189–4211 (2020).

    Article

    Google Scholar

  • Tomasella, J., Hodnett, M. G. & Rossato, L. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci. Soc. Am. J. 64, 327–338 (2000).

    Article
    CAS

    Google Scholar

  • Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, 111–117 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Garcia, M. N. et al. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia 197, 13–24 (2021).

    Article
    PubMed

    Google Scholar

  • Pivovaroff, A. L. et al. Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient. Biotropica 53, 1213–1225 (2021).

    Article

    Google Scholar

  • Wang, Y.-Q. et al. Hydraulic determinants of drought-induced tree mortality and changes in tree abundance between two tropical forests with different water availability. Agric. For. Meteorol. 331, 109329 (2023).

    Article

    Google Scholar

  • Clymo, R. S. & Whittaker, R. H. Communities and ecosystems. J. Ecol. 58, 897 (1970).

    Article

    Google Scholar

  • Danabasoglu, G. et al. The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2020JD032521 (2020).

  • Burrows, S. M. et al. The DOE E3SM v1.1 biogeochemistry configuration: description and simulated ecosystem-climate responses to historical changes in forcing. J. Adv. Model. Earth Syst. 12, e2019MS001766 (2020).

    Article

    Google Scholar

  • Harrop, B. E. et al. Diurnal rainfall response to the physiological and radiative effects of CO2 in tropical forests in the energy exascale earth system model v1. J. Geophys. Res. Atmospheres 127, e2021JD036148 (2022).

    Article
    CAS

    Google Scholar

  • Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).

    Article
    PubMed

    Google Scholar

  • Longo, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol. 219, 914–931 (2018).

    Article
    PubMed

    Google Scholar

  • Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

  • Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).

    Article

    Google Scholar

  • Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).

    Article
    PubMed

    Google Scholar

  • Reid, J. W. & Lovejoy, T. E. Ever Green: Saving Big Forests to Save the Planet (WW Norton & Company, 2022).

  • Chambers, J. Q. et al. Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia 141, 596–611 (2004).

    Article
    PubMed

    Google Scholar

  • Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the functionally assembled terrestrial ecosystem simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).

    Article

    Google Scholar

  • Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).

    Article
    PubMed

    Google Scholar

  • Raupach, M. R. et al. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11, 3453–3475 (2014).

    Article

    Google Scholar

  • Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil. Trans. R. Soc. B 368, 20120427 (2013).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article

    Google Scholar

  • Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge Univ. Press, 2021).

  • Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth system models. Biogeosciences 12, 5211–5228 (2015).

    Article

    Google Scholar

  • Yin, D., Roderick, M. L., Leech, G., Sun, F. & Huang, Y. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett. 41, 7891–7897 (2014).

    Article

    Google Scholar

  • Negron-Juarez, R. et al. Windthrow characteristics and their regional association with rainfall, soil, and surface elevation in the Amazon. Environ. Res. Lett. 18, 014030 (2023).

    Article

    Google Scholar

  • Garstang, M., White, S., Shugart, H. H. & Halverson, J. Convective cloud downdrafts as the cause of large blowdowns in the Amazon rainforest. Meteorol. Atmospheric Phys. 67, 199–212 (1998).

    Article

    Google Scholar

  • Araujo, R. F. et al. Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5 years of monthly drone data for a 50 ha plot. Biogeosciences 18, 6517–6531 (2021).

    Article

    Google Scholar

  • Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutierrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation and plant mortality in a tropical forest. Ecology 102, e03541 (2021).

    Article
    PubMed

    Google Scholar

  • Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W. J. & Braun, O. P. G. Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology 75, 853–858 (1994).

    Article

    Google Scholar

  • Negrón-Juárez, R. I. et al. Vulnerability of Amazon forests to storm-driven tree mortality. Environ. Res. Lett. 13, 054021 (2018).

    Article

    Google Scholar

  • Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).

    Article

    Google Scholar

  • Konings, A. G. et al. Active microwave observations of diurnal and seasonal variations of canopy water content across the humid African tropical forests. Geophys. Res. Lett. 44, 2290–2299 (2017).

    Article

    Google Scholar

  • Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytol. 223, 1253–1266 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Binks, O. et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob. Change Biol. 25, 2678–2690 (2019).

    Article

    Google Scholar

  • Oliveira, R. S., Dawson, T. E., Burgess, S. S. O. & Nepstad, D. C. Hydraulic redistribution in three Amazonian trees. Oecologia 145, 354–363 (2005).

    Article
    PubMed

    Google Scholar

  • Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Marengo, J. A. et al. Long-term variability, extremes and changes in temperature and hydrometeorology in the Amazon region: a review. Acta Amaz. 54, e54es22098 (2024).

    Article

    Google Scholar

  • Espinoza, J.-C. et al. The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Sci. Rep. 14, 8107 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dyer, L., Chambers, J., Pastorello, G. & Weber, A. Hot Droughts and Forest Tree Dynamics in the Amazon — Statistical Models, Scripts, Data, and Outputs (OSTI, 2025).

  • Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Pastorello, G. et al. Harmonized wood density data for central Amazon species. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1898906 (2022).

  • Chave, J. et al. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16, 2356–2367 (2006).

    Article
    PubMed

    Google Scholar

  • Lamour, J. et al. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. Plant Cell Environ. 46, 3806–3821 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Sullivan, M. J. P. et al. Variation in wood density across South American tropical forests. Nat. Commun. 16, 2351 (2025).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Adams, J. Climate_indices, an open source Python library providing reference implementations of commonly used climate indices. GitHub https://github.com/monocongo/climate_indices (2023).

  • Pastorello, G. et al. Drought index using micrometeorological data from Embrapa Weather Station at Adolpho Ducke Reserve in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1958257 (2023).

  • Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper 56 (UN Food and Agriculture Organization, 1998).

  • Lima, A. J. N., Teixeira, L. M., Carneiro, V. M. C., dos Santos, J. & Higuchi, N. Biomass stock and structural analysis of a secondary forest in Manaus (AM) region, ten years after clear cutting followed by fire. Acta Amaz. 37, 49–53 (2007).

    Article

    Google Scholar

  • Araújo, A. C. et al. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. J. Geophys. Res. Atmospheres 107, LBA-58 (2002).

    Article

    Google Scholar

  • Araujo, A. et al. Selected micrometeorological and soil data from the Manaus ZF2 K34 Eddy covariance tower for the 2015/16 El Niño event. NGEE-Tropics data collection. ESS-Dive https://doi.org/10.15486/ngt/1958362 (2023).

  • Burgess, S. S. O., Adams, M. A., Turner, N. C. & Ong, C. K. The redistribution of soil water by tree root systems. Oecologia 115, 306–311 (1998).

    Article
    PubMed

    Google Scholar

  • Christianson, D. S. et al. A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations. Ecol. Inform. 42, 148–158 (2017).

    Article

    Google Scholar

  • Marshall, D. C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 33, 385–396 (1958).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).

    Article
    CAS
    PubMed

    Google Scholar

  • Dawson, T. E. et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol. 27, 561–575 (2007).

    Article
    PubMed

    Google Scholar

  • Steppe, K., De Pauw, D. J. W., Doody, T. M. & Teskey, R. O. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 150, 1046–1056 (2010).

    Article

    Google Scholar

  • Grossiord, C. et al. Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia 191, 519–530 (2019).

    Article
    PubMed

    Google Scholar

  • Rao, M. P. et al. Approaching a thermal tipping point in the Eurasian boreal forest at its southern margin. Commun. Earth Environ. 4, 247 (2023).

    Article

    Google Scholar

  • Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Leung, L. R., Bader, D. C., Taylor, M. A. & McCoy, R. B. An introduction to the E3SM special collection: goals, science drivers, development, and analysis. J. Adv. Model. Earth Syst. 12, e2019MS001821 (2020).

    Article

    Google Scholar

  • Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

  • Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lima, A. J. N. et al. Growth, mortality, wood density, biomass data from BIONTE inventories in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1898910 (2022).

  • Meng, L., Koven, C., Pastorello, G. & Chambers, J. Forcing data (CESM2/CMIP6) for projection of drought impacts (2015–2100) at the K34 site in Manaus, Brazil. NGEE-Tropics data collection (dataset). ESS-Dive https://doi.org/10.15486/ngt/1923910 (2023).

  • Gimenez, B. et al. Sap velocity and leaf-level measurements in Manaus and Santarém-Brazil. NGEE-Tropics data collection. ESS-Dive https://doi.org/10.15486/ngt/1570380 (2021).



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: yalebnan.org

    تاريخ النشر: 2025-12-11 07:42:00

    الكاتب: ahmadsh

    تنويه من موقعنا

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    yalebnan.org
    بتاريخ: 2025-12-11 07:42:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقعنا والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    Exit mobile version